Quantum Shorts

The finalists of the Quantum Shorts film festival are announced!

Quantum Shorts is an annual public engagement competition organised by the Centre for Quantum Technologies at the National University of Singapore and involving many scientific partners, including the UK’s own National Quantum Technologies Programme (via its outreach arm – Quantum City). The competition alternates each year between short films and flash fiction and this year, it’s all about the films!

After the Quantum Shorts film festival launched its call for entries in September 2022, filmmakers responded with 232 quantum-inspired films from 58 different countries – the most in the film festival’s history. The festival now presents its nine finalists.

The finalists hail from Australia, South Africa, Singapore, Spain, the United Kingdom and the United States. Each film gives a different take on quantum physics in less than five minutes. Viewers will see dancers perform an interpretation of the observer effect, abstract audiovisual pieces probe space and time, and the many-worlds interpretation made into quantum comedy, among others.

"As a scientist, it was astonishing to see the range of interpretations of quantum physics: from entangled human feelings, over quantum as a form of destiny, to hypothetical future catastrophes,” says shortlisting judge Mariagrazia Iuliano at QuTech. “It is also impressive to experience how a rigid and strict physical model – which cannot be experienced in daily life – is brought to life in artistic movies.” 

For making the shortlist, these entries win a one-year digital subscription to Scientific American and a USD 250 screening award. The finalists could be up for more honours. The First Prize and Runner Up of the festival will now be decided by Quantum Shorts’ eminent judges. You could have a say too. We invite you to cast your vote for the People’s Choice prizeVoting is now open on the Quantum Shorts website and closes at 11:59 PM GMT on 27 March 2023.

To enjoy the films, dive straight into them via the festival website at shorts.quantumlah.org, where you
can also find interviews with the filmmakers revealing behind-the-scenes stories.

In alphabetical order, the shortlisted films are:

  • Boundary Of Time – Using old-school visual effects techniques, Director Kevin Lucero Less creates a metaphor for the arrow of time in this abstract short film
  • Missed Call – A student grapples with his father’s health crisis at a distance in this short by Director Prasanna Sellathurai
  • The Heart of the Matter – Filmmaker Betony Adams presents an atomistic take on the meaning of life while paying tribute to Louis de Broglie’s discovery of the wave nature of electrons
  • The Human Game – Director Dani Alava portrays a dystopian future with quantum machines 
  • THE observer – An artistic take on the observer effect through screendance, a hybrid medium of cinematography and choreography, by Director Alma Llerena
  • WHAT IS QUANTUM? – Using a combination of live action, green screen and stop-motion animation, Michael, Emmett and Maxwell Dorfman give their take on what quantum physics is.
  • Clockwise – Inspired by Zeno’s Paradox and the recursive subdivision of space and time, Director Toni Mitjanit presents an experimental audiovisual piece of colour and tessellation
  • Continuum – In this audiovisual film, the StoryBursts team, consisting of members from Australia and Singapore, give a creative response to research on gravitational waves by Dr Linqing Wen at the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav)
  • Many Excuses Interpretation – In this quantum comedy by Paul, Felix, Alfie, Petra and Ezra Ratner, two brothers argue over broken gadgets and the many worlds interpretation of quantum physics

Congratulations to the finalists!

New Scientist Live

Visiting New Scientist Live

Visiting New Scientist Live

Carlos Nino Sandoval is studying at the University of Birmingham for a PhD in Physics. Before this, Carlos completed his undergraduate degree in Physics in Colombia, and his master’s degree in Engineering in Germany, and then spent nine years working in multisectoral companies and organisations coordinating projects around metrology – the science of measurements - for national and international markets.

New Scientist Live is the perfect way to bring together new technological challenges and innovative applications. There are lots of applications on show and exhibitors are always willing to answer any questions. The audience is varied with children, students and adults. I noted how some of the visitors were surprised by the simple and clear way of explaining the science. It doesn't matter how old you are, and how much knowledge you have about something – if you have the motivation to ask, then you have made the first step in science.

Among the exhibits which received much attention was Quantum City, an exhibit hosted by the four Quantum Technology Hubs, part of the UK National Quantum Technologies Programme. For many of the visitors, Quantum City marked the first time viewing applications related to quantum science. Researchers from the Quantum Communications Hub, Quantum Technology Hub Sensors and Timing and National Physical Laboratory at the Quantum City exhibit managed to capture the attention of students and adults alike by explaining the scientific background of the research in clear detail, as well as how the technologies will be used in the real world.  

One of the demonstrators which drew many visitors was presented by Quantum Technology Hub Sensors and Timing researchers. This demonstrator uses quantum sensor technology for brain sensing: the development of this technology seeks, among other things, to study brain diseases in a more precise and non-invasive way. This study offers greater tools to understand this type of disease and, over time, develop more effective treatments.

National Physical Laboratory also presented at the Quantum City exhibit with several experiments around metrology, showing how quantum technology has been used to establish new standards in measurements.

New Scientist Live offered a wide variety of exciting innovative technologies for different sectors. For example, how robots will soon be able to perform high-risk surgeries with greater precision. And also, how prevention technologies will help prevent disastrous explosions, such as the detection of early gas leaks.

New Scientist Live is taking place again in 2023. You can register your interest to receive more information about the next event at the New Scientist Live website: https://live.newscientist.com/register-interest-new-scientist-live-2023.


For decoration only
Revolutionising biomedical imaging

Quantum imaging is an emerging approach proving vital to achieving society’s healthcare needs of tomorrow. 

At QuantIC, the UK Hub in Quantum Enhanced Imaging, researchers are working together with industry to deliver biological imaging technology using new quantum-inspired effects. The research has shown promising capabilities while simultaneously reducing device costs and rapidly improving accessibility for patients.

Pulse oximeters are among the most common optical devices for monitoring blood oxygenation and they played a critical role during the COVID-19 pandemic. Pulse oximeters work by measuring the transmission of light through the patient’s fingertips and requires calibration based on skin tone and finger anatomy.  However, this calibration is not suitable for everyone and often provides less accurate results in patients with darker skin tones or smaller than average fingertips.

QuantIC researchers, in partnership with semiconductor manufacturer Elmos, are working to develop an oximeter that provides accurate results no matter the skin tone or anatomy size. The proposed device works on the travel time of light as well as its transmission, and measurements are made possible due to the extremely sensitive quantum detectors. The introduction an additional travel time measurement removes any patient calibration.

Imaging through the human body with visible light is another goal for QuantIC’s leading research teams, who are aiming to quantum light-in-flight techniques, making imaging through tissue possible. This will replace expensive and limited MRI and X-Ray machines with hand-held portable devices. The pioneering team are due to present their exciting first results later in the year.

A laptop and stethoscope
Future proofing cyber security for the healthcare sector with quantum communications

Cyber security is crucial to the healthcare sector. Find out how quantum communications could help to secure patient data. 

Advances in quantum computing pose a real threat to current encryption techniques underpinning the world’s cyber security infrastructure, and in fact, data could be intercepted and downloaded now, ready to be decrypted later. Any breaches in cyber security resulting in the leaking of any confidential patient data could have major legal and financial implications, risking the operations of essential healthcare services. It is therefore imperative that healthcare providers and suppliers act now to protect their data and communications.

To future proof-cyber security, researchers at the Quantum Communications Hub are developing quantum networking technologies to demonstrate that quantum secure communications can operate in the real world alongside conventional communications infrastructure. The UK’s first quantum network, the UKQN, was launched in 2018 by the Hub and provides a secure link spanning 410km, connecting Bristol to Cambridge. The UKQN was subsequently expanded with the launch of the UKQNtel in 2019. This network extends the UKQN by 125km to Ipswich, and uses previously installed standard commercial grade optical fibre, providing a testbed for new quantum secure communications technologies and systems and paving the way for future commercialisation of quantum communications technologies.

Once quantum networks are implemented, healthcare providers and suppliers will be able to trust that sensitive data can be transferred up and down the country completely securely, without the worry of interception and decryption. There is also the possibility for healthcare providers to install their own small-scale local quantum networks, facilitating the secure transfer of data internally across medical campuses.

Quantum computing as a healthcare tool

The Quantum Computing and Simulation Hub is working to develop quantum computers that could have major impact upon the healthcare sector. 

Just over 50 years since the release of the first commercial microprocessor, computing is about to take another important step. In the UK’s Quantum Computing and Simulation Hub, a collaboration between 17 universities, researchers are working to develop quantum computers that will revolutionise every aspect of our lives.

While the technologies being worked on now are very much in their infancy it is already possible to imagine some of the advances fully-fledged quantum computers may bring to healthcare in the future.

One exciting area in which quantum computing may make advances is the development of new drugs. While existing digital computers make valiant attempts to mimic the complex processes we find in nature, the advanced simulations required to understand how compounds interact at a molecular level are beyond their reach.  Quantum computing and simulation potentially offer the tools to make massive breakthroughs in this field.

The potential of quantum computing also extends beyond discovering new drugs. The vast processing power these new machines are expected to offer may eventually even give us the chance to manage our health at a personal level, providing treatments tailored to an individual based on genetic and environmental factors, alongside more traditional measurements. While these possibilities are some way off, the work taking place in the UK now to develop quantum computers is the first step towards this exciting future.

A man wearing a quantum brain scanner
Transforming diagnosis and detection in healthcare with quantum sensing

Engineers and physicists at the UK Quantum Technology Hub Sensors and Timing are developing a new generation of magnetic systems to improve our understanding of everything from basic cognition to dementia and ADHD.

Through using Optically Pumped Magnetometers (OPMs), Hub researchers have created the first wearable MEG system which permits free movement during scanning.  This can be placed directly on the scalp, closer to the brain, enhancing the accuracy of signal detection five-fold. A wearable system imposes less restriction on movement by the subject and avoids the high installation and running costs of a conventional MEG system. This technology will enable detailed research into brain conditions such as Dementia, Cerebrovascular Disease and Parkinson’s.

Three years after Hub researchers at the University of Nottingham published a ground-breaking paper in Nature on non-invasive imaging techniques to investigate brain function, Dr Elena Boto and the academic team in Nottingham, along with David Woolger at Magnetic Shields Ltd, set up Cerca Magnetics Ltd, a spin-out company capitalising on this ground-breaking research which aims to bring wearable quantum-enabled brain scanners to both a research and clinical commercial market. Since launching, Cerca successfully installed its OPM-MEG system at the Hospital for Sick Children (SickKids) in Toronto for ground-breaking research into autism, as well as Young Epilepsy to revolutionise the diagnostic experience for children with Epilepsy.

Animated brain

New spin-out partnership signals quantum leap for brain imaging

A new type of wearable brain scanner is a step closer to being used in hospitals with the launch of a new spin-out company formed by UK Quantum Technology Hub Sensors and Timing researchers at the University of Nottingham and Magnetic Shields Ltd (MSL).

Cerca Magnetics Limited aims to bring the world’s most advanced brain scanner to market. The Cerca Scanner has been specially designed to allow people to move freely whilst being scanned, and will offer an unprecedented window on brain function and give new hope to people suffering with severe neurological illnesses, such as epilepsy.

Hub researchers at the University of Nottingham have been developing the technology for the wearable brain scanner for the past five years in collaboration with neuroscientists at University College London. Their research, funded by the UK Quantum Technologies Programme, Innovate UK, and the Wellcome Trust, has demonstrated the ability to create images of the brain with millimetre accuracy, even when the person being scanned is moving. This opens up new possibilities for imaging babies and children.

This new wearable scanner is based on a technique called magnetoencephalography (MEG), in which the tiny magnetic fields generated by electrical current flow in brain cells are measured. Mathematical reconstruction of those fields generates images showing moment-to-moment changes in brain activity. These unique pictures can tell us how our brains respond when we perform a mental task, and more importantly, how things begin to go wrong in neurological or mental health problems.

Whilst other MEG scanners exist, the Cerca System is unique since it is the only “wearable” MEG system allowing patients to move freely during the scan. It also uniquely adapts to different head sizes, making it possible to scan adults, or babies, using the same system. It offers considerably higher sensitivity and spatial specificity compared to the best existing systems and all of this can be achieved at lower cost.

Dr Elena Boto, University of Nottingham scientist and chief technology officer for Cerca, said: “5 years ago, we started with a few equations on the back of an envelope, and a few lines of computer code to simulate a system. To have seen this mature into a commercialisable imaging system, which can outperform anything available currently, has been remarkable. There are many advantages to our system but for me the biggest is the ability to scan babies and children. Neurological disorders, like epilepsy, often strike in young children and this new system will provide new information to medical professionals which they can use in treatment planning.”

This article was originally posted on the UK Quantum Technology Hub Sensors and Timing website

Animated human brain

Researchers awarded by Institute of Physics on ground-breaking technology offering deeper insight into the human body

We are delighted to announce that the Institute of Physics (IoP) have awarded Silver Subject Medals to two UK Quantum Technology Hub Sensors and Timing researchers at the University of Nottingham.

Professor Penny Gowland, Co-Investigator for the Magnetometry for Healthcare work stream at the UK Quantum Technology Hub Sensors and Timing, has been awarded the 2020 Peter Mansfield Medal and Prize for her major contributions in developing novel techniques for quantitative Magnetic Resonance Imaging (MRI) to enable innovative, non-invasive investigations into human anatomy and physiology.

Among many examples of her outstanding research breakthroughs, Professor Gowland developed a series of novel MRI measurements for studying the function of the gastro-intestinal (GI) tract.

These have improved our understanding of the physiological response to feeding, including how the formation of food can affect the sense of satiety. These methods have provided powerful objective ways of assessing functional GI disorders such as Irritable Bowel Syndrome (IBS) and other diseases such as cystic fibrosis.

Mapping brain activity with portable technology is a key part of the Quantum Technology Hub’s research, and Professor Richard Bowtell, also a Co-Investigator at the Hub, has been awarded the 2020 James Joule Medal and Prize for his work in developing technology for biomedical imaging.

In addition to a broad body of work that has pushed the capability of MRI to higher field and diagnostic power, Professor Bowtell and colleagues have developed a unique wearable system that allows brain mapping to be carried out during experiments in which the subject is free to move, opening up a range of new brain-mapping experiments and studies of previously inaccessible subject groups. The system depends on a technology called magnetoencephalography (MEG), which maps magnetic fields outside the scalp generated by brain activity.

Professor Gowland said: “I am very honoured to have been awarded the Sir Peter Mansfield Medal, particularly since I had the pleasure of working for Peter Mansfield early in my career. This award recognises the generous support I have received from many colleagues from different disciplines over the years. It is very exciting to now be using quantum technology sensors to provide a new method of studying the function of the human body.”

Professor Bowtell said: “It is a great honour to receive the James Joule medal. The award is definitely testament to the support of a fantastic set of colleagues, who I have had the pleasure of working with during my career. The backing of the UK National Quantum Technology Hub Sensors and Timing has been crucial for our recent success in developing a wearable MEG system.”

This article was originally posted on the UK Quantum Technology Hub Sensors and Timing website

Dr Amrute Gadge, University of Sussex
Researcher creates fifth state of matter in living room

A researcher from the UK Quantum Technology Hub Sensors and Timing has created the fifth state of matter working from home using quantum technology

Dr Amruta Gadge, Research Fellow in Quantum Physics and Technologies at the University of Sussex, successfully created a Bose-Einstein Condensate (BEC) at Sussex’s facilities despite working remotely from her living room two miles away.

It is believed to be the first time that BEC has been created remotely in a lab that did not have one before.

The research team believe the achievement could provide a blueprint for operating quantum technology in inaccessible environments such as space.

A BEC consists of a cloud of hundreds of thousands of rubidium atoms cooled down to nanokelvin temperatures, which is more than a billion times colder than freezing.  At this point the atoms take on a different property and behave all together as a single quantum object. This quantum object has special properties which can sense very low magnetic fields.

Dr Gadge was able to make complex calculations, optimise, and run the sequence from her home by accessing the lab computers remotely. Just prior to lockdown, researchers set-up a 2D magnetic optical trap and have returned only a couple of times to carry out essential maintenance.

She said: “The research team has been observing lockdown and working from home and so we have not been able to access our labs for weeks.  But we were determined to keep our research going so we have been exploring new ways of running our experiments remotely. It has been a massive team effort.”

Peter Krüger, Professor of Experimental Physics at the University of Sussex, said: “We believe this may be the first time that someone has established a BEC remotely in a lab that didn’t have one before. We are all extremely excited that we can continue to conduct our experiments remotely during lockdown, and any possible future lockdowns.

"But there are also wider implications beyond our team. Enhancing the capabilities of remote lab control is relevant for research applications aimed at operating quantum technology in inaccessible environments such as space, underground, in a submarine, or in extreme climates.” 

The Quantum Systems and Devices Group have been working on having a second lab with a BEC running consistently over the past nine months as part of a wider project developing a new type of magnetic microscopy and other quantum sensors. 

The research team uses atomic gases as magnetic sensors close to various objects including novel advanced materials, ion channels in cells, and the human brain. Trapped cold quantum gases are controlled to create extremely accurate and precise sensors that are ideal for detecting and studying new materials, geometries and devices.The research team are developing their sensors to be applied in many areas including electrical vehicle batteries, touch screens, solar cells and medical advancements such as brain imaging.

EEG of brain
Quantum sensors to enable better planning for epilepsy surgery patients

A new project to harness quantum technology to enable better planning for patients undergoing epilepsy surgery

The Quantum Technology Hub Sensors and Timing, which is led by the University of Birmingham, has awarded £300,000 to the project via its Partnership Resource Fund (PRF). Researchers at the University of Nottingham and University College London will carry out the research, which aims to improve the accuracy of pre-surgical planning.

The team will combine quantum-enabled wearable technology with new biophysical modelling into a helmet-style device that will enable brain activity to be measured even when a subject moves. By measuring electric discharges during seizures, it is possible to pinpoint the location of the seizure with much greater accuracy. This information can be used to design highly targeted and completely non-invasive surgical planning.

Epilepsy is a serious and debilitating disorder affecting around 600,000 people in the UK. If patients do not respond to medication – in around 30% of cases – neurosurgery is the most effective solution to remove the seizure focus. Pre-surgical planning is incredibly important to ensure that whilst the seizure focus is removed, cortical function remains intact.

Presently, this planning stage is difficult, and can depend on an additional operation to implant electrodes in the brain. Although functional neuroimaging offers a non-invasive method of pre-surgical planning, conventional systems rely on patients keeping still within large and cumbersome machines. This makes it difficult to measure brain activity, particularly whilst a patient is having a seizure.

This project will be undertaken at the Wellcome Centre for Human Neuroimaging (WCHN) and will take advantage of the existing strong and productive links between UCL and Nottingham and the neurology team at the National Hospital for Neurology and Neurosurgery.