Quantum Shorts

The finalists of the Quantum Shorts film festival are announced!

Quantum Shorts is an annual public engagement competition organised by the Centre for Quantum Technologies at the National University of Singapore and involving many scientific partners, including the UK’s own National Quantum Technologies Programme (via its outreach arm – Quantum City). The competition alternates each year between short films and flash fiction and this year, it’s all about the films!

After the Quantum Shorts film festival launched its call for entries in September 2022, filmmakers responded with 232 quantum-inspired films from 58 different countries – the most in the film festival’s history. The festival now presents its nine finalists.

The finalists hail from Australia, South Africa, Singapore, Spain, the United Kingdom and the United States. Each film gives a different take on quantum physics in less than five minutes. Viewers will see dancers perform an interpretation of the observer effect, abstract audiovisual pieces probe space and time, and the many-worlds interpretation made into quantum comedy, among others.

"As a scientist, it was astonishing to see the range of interpretations of quantum physics: from entangled human feelings, over quantum as a form of destiny, to hypothetical future catastrophes,” says shortlisting judge Mariagrazia Iuliano at QuTech. “It is also impressive to experience how a rigid and strict physical model – which cannot be experienced in daily life – is brought to life in artistic movies.” 

For making the shortlist, these entries win a one-year digital subscription to Scientific American and a USD 250 screening award. The finalists could be up for more honours. The First Prize and Runner Up of the festival will now be decided by Quantum Shorts’ eminent judges. You could have a say too. We invite you to cast your vote for the People’s Choice prizeVoting is now open on the Quantum Shorts website and closes at 11:59 PM GMT on 27 March 2023.

To enjoy the films, dive straight into them via the festival website at shorts.quantumlah.org, where you
can also find interviews with the filmmakers revealing behind-the-scenes stories.

In alphabetical order, the shortlisted films are:

  • Boundary Of Time – Using old-school visual effects techniques, Director Kevin Lucero Less creates a metaphor for the arrow of time in this abstract short film
  • Missed Call – A student grapples with his father’s health crisis at a distance in this short by Director Prasanna Sellathurai
  • The Heart of the Matter – Filmmaker Betony Adams presents an atomistic take on the meaning of life while paying tribute to Louis de Broglie’s discovery of the wave nature of electrons
  • The Human Game – Director Dani Alava portrays a dystopian future with quantum machines 
  • THE observer – An artistic take on the observer effect through screendance, a hybrid medium of cinematography and choreography, by Director Alma Llerena
  • WHAT IS QUANTUM? – Using a combination of live action, green screen and stop-motion animation, Michael, Emmett and Maxwell Dorfman give their take on what quantum physics is.
  • Clockwise – Inspired by Zeno’s Paradox and the recursive subdivision of space and time, Director Toni Mitjanit presents an experimental audiovisual piece of colour and tessellation
  • Continuum – In this audiovisual film, the StoryBursts team, consisting of members from Australia and Singapore, give a creative response to research on gravitational waves by Dr Linqing Wen at the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav)
  • Many Excuses Interpretation – In this quantum comedy by Paul, Felix, Alfie, Petra and Ezra Ratner, two brothers argue over broken gadgets and the many worlds interpretation of quantum physics

Congratulations to the finalists!

New Scientist Live

Visiting New Scientist Live

Visiting New Scientist Live

Carlos Nino Sandoval is studying at the University of Birmingham for a PhD in Physics. Before this, Carlos completed his undergraduate degree in Physics in Colombia, and his master’s degree in Engineering in Germany, and then spent nine years working in multisectoral companies and organisations coordinating projects around metrology – the science of measurements - for national and international markets.

New Scientist Live is the perfect way to bring together new technological challenges and innovative applications. There are lots of applications on show and exhibitors are always willing to answer any questions. The audience is varied with children, students and adults. I noted how some of the visitors were surprised by the simple and clear way of explaining the science. It doesn't matter how old you are, and how much knowledge you have about something – if you have the motivation to ask, then you have made the first step in science.

Among the exhibits which received much attention was Quantum City, an exhibit hosted by the four Quantum Technology Hubs, part of the UK National Quantum Technologies Programme. For many of the visitors, Quantum City marked the first time viewing applications related to quantum science. Researchers from the Quantum Communications Hub, Quantum Technology Hub Sensors and Timing and National Physical Laboratory at the Quantum City exhibit managed to capture the attention of students and adults alike by explaining the scientific background of the research in clear detail, as well as how the technologies will be used in the real world.  

One of the demonstrators which drew many visitors was presented by Quantum Technology Hub Sensors and Timing researchers. This demonstrator uses quantum sensor technology for brain sensing: the development of this technology seeks, among other things, to study brain diseases in a more precise and non-invasive way. This study offers greater tools to understand this type of disease and, over time, develop more effective treatments.

National Physical Laboratory also presented at the Quantum City exhibit with several experiments around metrology, showing how quantum technology has been used to establish new standards in measurements.

New Scientist Live offered a wide variety of exciting innovative technologies for different sectors. For example, how robots will soon be able to perform high-risk surgeries with greater precision. And also, how prevention technologies will help prevent disastrous explosions, such as the detection of early gas leaks.

New Scientist Live is taking place again in 2023. You can register your interest to receive more information about the next event at the New Scientist Live website: https://live.newscientist.com/register-interest-new-scientist-live-2023.


A laptop and stethoscope
Future proofing cyber security for the healthcare sector with quantum communications

Cyber security is crucial to the healthcare sector. Find out how quantum communications could help to secure patient data. 

Advances in quantum computing pose a real threat to current encryption techniques underpinning the world’s cyber security infrastructure, and in fact, data could be intercepted and downloaded now, ready to be decrypted later. Any breaches in cyber security resulting in the leaking of any confidential patient data could have major legal and financial implications, risking the operations of essential healthcare services. It is therefore imperative that healthcare providers and suppliers act now to protect their data and communications.

To future proof-cyber security, researchers at the Quantum Communications Hub are developing quantum networking technologies to demonstrate that quantum secure communications can operate in the real world alongside conventional communications infrastructure. The UK’s first quantum network, the UKQN, was launched in 2018 by the Hub and provides a secure link spanning 410km, connecting Bristol to Cambridge. The UKQN was subsequently expanded with the launch of the UKQNtel in 2019. This network extends the UKQN by 125km to Ipswich, and uses previously installed standard commercial grade optical fibre, providing a testbed for new quantum secure communications technologies and systems and paving the way for future commercialisation of quantum communications technologies.

Once quantum networks are implemented, healthcare providers and suppliers will be able to trust that sensitive data can be transferred up and down the country completely securely, without the worry of interception and decryption. There is also the possibility for healthcare providers to install their own small-scale local quantum networks, facilitating the secure transfer of data internally across medical campuses.

Radar installation at the University of Birmingham

Transforming detection with quantum-enabled radar

Radars are being installed at the top of an engineering building at the University of Birmingham as part of a demonstration intended to test and prove the precision of quantum-enabled radar detection capabilities.

A key part of keeping everyday life secure is being able to detect dangerous or unsafe situations before they occur. Quantum enabled radar technology research, undertaken by School of Engineering academics at the UK Quantum Technology Hub Sensors and Timing, aims to do precisely this.

The Quantum Technology Hub is led by the University of Birmingham and partnered with the Universities of Glasgow, Strathclyde, Sussex, Imperial, Nottingham, Southampton as well as the National Physics Laboratory and the British Geological Survey. It has a close focus on industrial collaboration and partnership and. in line with this, the radars are being developed and installed by Aveillant, a radar technology company whose mission is to move radar technology into the information age by powering a full digital picture of the sky.

The radar technology being exhibited at the demonstration is dependent on the Hub’s compact atomic clock oscillators., housed on campus. These oscillators provide the high precision and low signal noise required for the radar to detect small, slow moving objects, such as drones, at longer distances, and even in cluttered environments.

Radar detection is a deceptively complex necessity in the modern world: it is required for a surprisingly wide range of sectors. For example, high precision radar will ensure autonomous vehicles can detect hazards well ahead of time. Hub academics are also developing next generation distributed radar systems, which will transform surveillance by providing much greater coverage and maintaining real-time situational awareness in highly congested and cluttered environments.

The EPRSC-funded project Mapping and Enabling Future Airspace (MEFA), led by academics at the Department of Electronic, Electrical and Systems Engineering, will also benefit hugely from the radar installation. MEFA is a three-year interdisciplinary project bringing together radar experts from across the University to study the use of urban airspace. The project will investigate how radar can be used to study the effects of urban developments on migrating birds, and also to differentiate between flying birds and small drones. Data collected during the radar installation will be incredibly beneficial for the MEFA project.

Professor Chris Baker, Chair in Intelligent Sensor Systems at the University of Birmingham, School of Engineering, said: “By putting in place this highly sophisticated world-leading technology, we and our partners can explore a wide range of advance, novel networked radar surveillance concepts.”

Dr Dominic Walker, Chief Executive Officer of Aveillant, added “We are delighted that our Holographic Radars are being used in this programme. At Aveillant we are always looking to push the boundaries of our technology, and working with some of the UK’s leading academic institutions such as the University of Birmingham, is allowing us to do just that.”

This article was originally posted on the UK Quantum Technology Hub Sensors and Timing website

The project leader Siddarth K Joshi optimising the central quantum network hub.

Quantum network demonstrated by Quantum Communications Hub investigators is largest of its kind

The quantum internet is one step closer to becoming reality, thanks to the work of Quantum Communications Hub investigators and their collaborators, who have demonstrated the largest ‘fully connected quantum network’, to date.

Given the serious cybersecurity threats imposed by major advances in quantum computing and increasingly advanced hackers, there is a growing need to incorporate new security technologies into networks, which are integral to much of our communications infrastructure.  Quantum networks are far more secure than conventional networks as they rely on the fundamental properties of quantum physics, as opposed to complex codes which are difficult to crack, to provide security. 

Quantum networks can be classified into one of three categories: trusted node networks, where the nodes within the network are assumed to be safe from eavesdroppers; access networks, where only certain pairs of users are allowed to exchange a key at a time; and fully connected quantum networks, where every user is connected to every other user directly. The network, demonstrated by the team led by Dr Siddarth Joshi from QET Labs Bristol, is an example of a fully connected network and uses the existing fibre optic network within the city of Bristol. The demonstration enabled simultaneous and secure connections between 28 pairings of eight users, making it largest in the world in terms of number of users. 

Until now, fully connected quantum networks have posed scalability problems, however the team have overcome this by using a method called multiplexing entanglement. Entanglement is the property that gives correlations between two or more quantum systems, even when these are separated by large distances, meaning if the state of one system is measured, the state of the other is automatically known. This can be used to generate encryption keys to secure data. Multiplexing entanglement enables light particles, produced by a single system, to be split so they can be received by several users, massively increasing efficiency of the network. The revolutionary methods used could potentially enable the network to serve millions of users in the future, according to Joshi.

Speaking about the major advancement, lead author, Joshi, said:

“This represents a massive breakthrough and makes the quantum internet a much more realistic proposition. Until now, building a quantum network has entailed huge cost, time, and resource, as well as often compromising on its security which defeats the whole purpose.”

“Our solution is scalable, relatively cheap and, most important of all, impregnable. That means it’s an exciting game changer and paves the way for much more rapid development and widespread rollout of this technology.”

A quantum network that can support all forms of quantum communications technologies will be required for the quantum internet to be effective in the long-term. Many quantum communications technologies rely upon the distribution of entanglement; thus, this network could pave the way to making this a reality.

Siddarth Joshi et al, 2020, ‘A trusted node–free eight-user metropolitan quantum communication network’, Science Advances, Vol. 6, no. 36. DOI: 10.1126/sciadv.aba0959

Image credit: Soeren Wengerowsky

Cogs in machine

Developing optical lattice clocks to test gravity theory

A new class of optical clocks are set to revolutionize timekeeping by offering a level of precision that significantly exceeds standard atomic clocks, say leading experts at the UK Quantum Technology Hub Sensors and Timing, which is led by the University of Birmingham.

These new so-called optical lattice clocks can be used to test the limits of gravity to a high level of precision and also enable further study of the Earth’s geodesy, comment Dr Yeshpal Singh and Professor Kai Bongs in an article published in Nature.

In the article, Dr Singh and Professor Bongs discuss how Albert Einstein’s general theory of relativity, which explains gravity as a “consequence of the curvature of space-time that is deformed by mass”, has been held as the “best theory of gravity we currently have” since it was published in 1915.

Dr Singh, of the University of Birmingham’s School of Physics and Astronomy and academic lead for quantum clocks at the UK Quantum Technology Hub Sensors and Timing, said: “It has not yet been possible to unify the theory of relativity with quantum field theory, meaning that there is not yet a complete theory of nature”.

“For instance, dark energy and dark matter - subjects used to describe observations of an accelerating expansion of the Universe contradicting predictions from Einstein’s theory - remain unexplained.

“So how do we develop more precise tests of relativity? At the Quantum Technology Hub, my team and I are working closely with industry to develop portable, robust quantum clocks, which aim to give ultra-precise, ultra-accurate time to more than one billionth of a second.

“These clocks, along with the rest of the sensor technology in development at the Hub, are specifically being created to be robust and transportable, capable of performing in deployable conditions. Once developed, quantum clocks can be implemented in a number of sectors, such as in finance, navigation, and even space.”

Optical Lattice clocks were first proposed by Professor Hidetoshi Katori at the University of Tokyo in the early 2000s.  They store atoms tight enough to remove unwanted Doppler frequency shifts, hence allowing long interrogation times, and not interfering with the frequency of the clock transition.

The clocks will also present an opportunity to test general relativity and geodesy. This will be done by placing clocks at differing heights to determine the geoid height via a frequency comparison between the clocks, providing competition with the best geophysical approaches.

One example is the recent breakthrough by Professor Katori and his team, when two portable, robust optical clocks were created, with precision surpassing many of the best clocks available in the world. A six-month long measurement campaign was undertaken to achieve results comparable with the “best space tests of general relativity, and open[ing] up fascinating new applications on Earth using such clocks”.

Professor Katori and his team’s impressive achievement, and the potential of optical lattice clock projects all over the world, paves the way for exciting industrial collaboration with researchers at the Quantum Technology Hub to revolutionise oil and mineral exploration, ultra-precise satellite navigation systems and performing time synchronization for quantum communication networks.

This article was originally posted on the UK Quantum Technology Hub Sensors and Timing website

Quantum Network
Quantum Networks: integrating the UK’s quantum networks with current national communications infrastructure

Could the UK’s Quantum Networks ensure long-distance secure communications for the quantum-enabled world?

Modern society relies upon electronic communications and the internet, for which optical fibre networks form the foundations. Given the serious cybersecurity threats imposed by major advances in quantum computing, there is now a growing need to incorporate new security technologies into fibre networks. Quantum Key Distribution (QKD) is a mature quantum technology, which underpins secure communications and other transactions through the secure distribution of cryptographic keys. Work is underway investigating the integration of QKD, alongside new quantum-resistant cryptography, into existing fibre networks.

Construction of quantum networks is taking place in numerous countries across the world, with notable examples already operational in China and the Netherlands. In the UK, the Quantum Communications Hub is developing national quantum networking capability through construction of the UKQN (the UK’s first Quantum Network) and UKQNtel.

The UKQN is a research focused network, over 410km in length, and connects the quantum networks in the cities of Bristol and Cambridge over the National Dark Fibre Facility.

The UKQNtel network is a unique facility, which extends over 125km and utilises previously installed standard commercial grade optical fibre and provides a real-world environment for field trials of new quantum secure communications technologies and systems.

The UK’s quantum networks are paving the way for integration of quantum networks within the wider national communications infrastructure, in order to ensure cybersecurity in the future quantum-enabled world. For further information, check out the Quantum Communications Hub's video on the UK Quantum Network.

Global communications networks
Quantum secured communications across continents

Could quantum key distribution (QKD) in space enable quantum secured communications around the world, across continents and oceans?

Data transfer and secure communications are absolutely essential today - for individuals, institutions, businesses, governments and nations. Society relies upon cybersecurity to ensure that data is stored and transferred securely. Quantum secure communications, and in particular QKD, a mature quantum technology for the distribution of encryption keys, have the potential to one day underpin the world’s digital communications. At present, data transfer by QKD usually takes place by optical fibre, but this is not possible in all situations due to distance limitations – particularly under the sea! To deliver quantum secured communication between continents, techniques need to be developed to transfer quantum encryption keys between ground stations and satellites, and between satellites.

Researchers at the Quantum Communications Hub are working on developing satellite-to-ground quantum communications, which will one day enable data to be transferred around the world, over coming any distance limitations and ensuring data security, no matter how far the data needs to travel. The Hub will soon be launching a satellite equipped with Hub developed quantum technologies into space to enable testing of the technologies which will ultimately bring the technologies closer to implementation within communications infrastructure around the world.

Dr Amrute Gadge, University of Sussex
Researcher creates fifth state of matter in living room

A researcher from the UK Quantum Technology Hub Sensors and Timing has created the fifth state of matter working from home using quantum technology

Dr Amruta Gadge, Research Fellow in Quantum Physics and Technologies at the University of Sussex, successfully created a Bose-Einstein Condensate (BEC) at Sussex’s facilities despite working remotely from her living room two miles away.

It is believed to be the first time that BEC has been created remotely in a lab that did not have one before.

The research team believe the achievement could provide a blueprint for operating quantum technology in inaccessible environments such as space.

A BEC consists of a cloud of hundreds of thousands of rubidium atoms cooled down to nanokelvin temperatures, which is more than a billion times colder than freezing.  At this point the atoms take on a different property and behave all together as a single quantum object. This quantum object has special properties which can sense very low magnetic fields.

Dr Gadge was able to make complex calculations, optimise, and run the sequence from her home by accessing the lab computers remotely. Just prior to lockdown, researchers set-up a 2D magnetic optical trap and have returned only a couple of times to carry out essential maintenance.

She said: “The research team has been observing lockdown and working from home and so we have not been able to access our labs for weeks.  But we were determined to keep our research going so we have been exploring new ways of running our experiments remotely. It has been a massive team effort.”

Peter Krüger, Professor of Experimental Physics at the University of Sussex, said: “We believe this may be the first time that someone has established a BEC remotely in a lab that didn’t have one before. We are all extremely excited that we can continue to conduct our experiments remotely during lockdown, and any possible future lockdowns.

"But there are also wider implications beyond our team. Enhancing the capabilities of remote lab control is relevant for research applications aimed at operating quantum technology in inaccessible environments such as space, underground, in a submarine, or in extreme climates.” 

The Quantum Systems and Devices Group have been working on having a second lab with a BEC running consistently over the past nine months as part of a wider project developing a new type of magnetic microscopy and other quantum sensors. 

The research team uses atomic gases as magnetic sensors close to various objects including novel advanced materials, ion channels in cells, and the human brain. Trapped cold quantum gases are controlled to create extremely accurate and precise sensors that are ideal for detecting and studying new materials, geometries and devices.The research team are developing their sensors to be applied in many areas including electrical vehicle batteries, touch screens, solar cells and medical advancements such as brain imaging.

Satellite in space
Developing a quantum inertial navigation system

Understanding the 'invisible utility'

If our Global Navigation Satellite System (GNSS) fails, it ranges anywhere between inconvenient to catastrophic. It is easy to underestimate how reliant we have become on navigation systems in our daily lives, and we often do not realise how dependent our services and national infrastructure are on GNSS, so much so that it has now become known as the ‘invisible utility’.

Railways, telecommunications and emergency services are just a few areas now reliant on GNSS for their operations. And yet, when GNSS was first developed by the US Department of Defence, its vulnerabilities were well-known enough to ensure they did not critically depend on it. Global Positioning System (GPS) was created in the 1970s, and now consists of up to 24 satellites circling the Earth in a precise orbit. It was originally intended to be used solely for military applications, but this remit was broadened to the wider public in the 1980s. Over time, GPS was adopted by service providers, companies and consumers, who became both increasingly dependent and oblivious to the weaknesses of the system over time. It has been estimated that by 2020, 80% of the world’s adult population will have access to a smart phone and therefore access to GNSS.

So what happens when our GNSS system fails? According to the Satellite-derived time and position: Blackett review (2018), “all GNSS receivers are vulnerable to natural and man-made interference”. Jamming, spoofing and even space weather can result in inaccuracies or loss of signal, and given the level of dependence on the navigation system across main services, this can severely weaken a country’s infrastructure.

At the UK Quantum Technology Hub Sensors and Timing, led by the University of Birmingham, one of our key areas of work is to create a quantum inertial navigation system. This is a standalone navigation system which does not rely on satellite signals and is therefore invulnerable to the same external risks experienced by GNSS.

Researchers at Imperial College London, one of the Quantum Technology Hub’s partners (alongside Southampton, Sussex, NPL, Strathclyde, Glasgow, Nottingham and the British Geological Survey) are leading the research and development of the quantum inertial navigation system.

And how does it work? Classical microelectromechanical systems (MEMs) can already provide high precision sensors for inertial navigation systems. However, MEMs devices are prone to drift, which limits how long they can provide accurate location information. Quantum inertial sensors overcome the problem of drift by measuring properties of atoms supercooled using lasers. At extremely low temperatures, the atoms ‘quantum’ nature dominates and they behave like waves, which can be used to encode inertial information. By hybridising MEMs and quantum inertial sensors we get the best of both – drifts are minimised, and measurement speed is maintained.

Dr Joseph Cotter, Research Fellow at the Centre for Cold Matter at Imperial College London, said: "The quantum navigation systems being developed by the UK Quantum Technology Hub Sensors and Timing offer the exciting prospect of new technologies that provide better and more reliable location information, without the need for a satellite link.”

The quantum inertial navigation system promises huge benefits to the UK. It will free large sections of our services and many professions from reliance on GNSS and the fear of it failing. As with much of the sensor research at the UK Quantum Technology Hub Sensors and Timing, the system will ensure that the country’s critical infrastructure is more secure and resilient.